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Abstract: In this study, the autonomous decision-making architecture of unmanned vessel 
navigation has been formulated. The aim of this study is the advancement of mathematical 
methods in the ship transportation field with relevance to collision avoidance scenario 
applications. The process of seafarers safely navigating a vessel at sea entails enacting 
appropriate decision-making at the appropriate time. In our model, we do not input the 
appropriate action order based on a seafarer’s experience. The model scores each step’s 
reward by its action behaviour and learns how to avoid obstacles by itself. By deploying 
decision timing, state, reward, and digitizing the seafarer’s decision, we establish a 
reinforcement learning algorithm based on Markov decision processes. In the model training, 
under a single factor influence, the vessel tends to change course with the best appropriate 
action behaviour, which is almost consistent with decision-making behaviour based on actual 
experience at sea. 

1. Introduction  

In the past few decades, increasing attention has been paid to Markov decision process (MDP) 
algorithms, partly due to the success of self-driving car research using reinforcement learning 
methods [1]. With the rapid development of automatic control, the Internet of Things (IoT), big data, 
state awareness, telecommunication, and other navigation technologies, the technical feasibility of 
smart ships has increased broadly [2]. In particular, the unmanned vessel yet to be christened, Yara 
Birkeland, is expected to begin its voyage in 2018 [3]. A large-scale merchant transportation of 
unmanned vessels has obvious advantages. For example, a fleet of unmanned container ships would 
maximize the capacity of storage space through the exclusion of the bridge and living area for the on-
board seafarers; thereby maximizing the cargo volume and improving the transportation efficiency. 

Moreover, many of the facilities on board serve the on-board seafarers, such as life-saving 
equipment, firefighting apparatus, pollution prevention, and living facilities. In the absence of 
seafarers, such equipment will not be required, reducing the weight of the ship and energy 
consumption, lowering the construction and operating costs, and increasing the ship’s cargo capacity. 
Moreover, the main causes of maritime accidents are human-based factors, such as inadequate 
decision-making, operational negligence, deficient emergency response, and other seafarer factors. 
In an unmanned vessel, ship maneuvering is conducted primarily through automatic decision-making 
and remote monitoring by personnel working under better working conditions at a shore side control 
station [4]. Thus, the impact of human-based factors is reduced. 
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However, the challenges are still many. One of the key problems of maritime navigation is the 
current trend towards human-centered decision-making systems. The process of seafarers 
maneuvering a ship at sea entails enacting the appropriate decision-making procedures at the 
appropriate time. Reinforcement learning has proven capable of developing learning models that are 
effective in planning [5]. In the prior research, the authors used the Robot Operating System as a tool, 
extended the Markov Decision-making (MDM) and supported the decision-making methodologies 
based on MDPs [6]. The aim of the MDPs is to provide an action set of decision-making for the on-
board cycle.  

Based on the complex maritime environment, it is observed that predetermination is the basic 
requirement to achieve safe navigation of unmanned vessels. This study consists of three sections. 
The first section clarifies the concept of MDPs, especially focusing on how to use MDPs to optimize 
the decision-making procedure under the situation of no seafarer on the bridge. In the second section, 
using MDPs to formulate a mathematical model, we classify the different elements of the navigation 
behaviour state. The third section concludes this study by presenting an algorithm for a very simple 
demonstration. The purpose of this paper is to build an automatic decision cycle model to increase 
the decision-making efficiency and safety performance of unmanned ships, the experiments 
conducted in this article also proved the performance of the autonomous decision-making can be 
improved. Under the single factor influence, with the model training, this paper also will provide the 
result that the vessel trends to change the course with the best appropriate maneuver behaviour, which 
is almost consistent with decision-making behaviour based on actual expert’s experience at sea. 

2. Mathematical Description of the Navigation State 

Generally, in a vessel navigating at sea, the officer of the watch learns to recognize the state of the 
navigation environment through equipment and his look-out experience. The scenario in this study 
describes a case without any seafarers on the bridge; therefore, the vessel only recognizes the 
surrounding environment with devices such as radar, camera, and automatic identification system 
(AIS). Within the scope of this study, we assume that the data obtained by all other devices has been 
integrated into a similar state framework (radar screen or electronic chart display). As shown in Fig. 
1, a cross encounter situation has been constructed between the vessel at the port side and the own 
ship. According to the International Regulations for Preventing Collisions at Sea (COLREGS), the 
own ship has no obligation to take an action to avoid the target vessel, but it should always pay 
attention to the changing state. Further, there is an obstacle (oil rig) in front of the starboard side of 
the own ship, and it needs to pass beyond a safe distance. This constitutes one of the most common 
navigational environments at sea. 

 
Figure 1: Example of the own ship encounters an obstacle state 
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Figure 2: Example of the own ship encounters an obstacle state 

 
This state changes, based on the surrounding environment and the change of the navigational state 

of the own ship. Each state change of the model requires a decision that weighs the next safe action 
behaviour and the risk probability of exercising the action behaviour. Therefore, the own ship must 
comprehensively predict and decide for the action change of each state to determine the optimal 
maneuver policy. There are two main ways to change the action behaviour of the own ship: change 
the course by steering (turn to port side ‘P’ or turn to starboard side ‘S’) or change speed (accelerate 
‘A’ or decelerate ‘D’). Due to the different amplitude of each action change, it can be regarded as a 
discrete vector set, as well as the entire control tensor consisting of the free combination of the two 
action sets: T_s= {A,D,P,S,AP,AS,DP,DS}. 

3. MDPs  

MDPs are usually advantageous for approaching a wide range of optimization problems solved 
through dynamic programming and reinforcement learning. It is a class of stochastic sequential 
decision processes, in which the reward and transition functions depend only on the current state of 
the model and the current action [7]. With the mathematical framework of the navigation states 
constructed, we can approach a simple model of completely autonomous decision-making based on 
Markov processes, as shown in Fig. 2. The green and orange circles represent the different states and 
actions, respectively. MDPs show that there may be more than one result per action in different states. 
For example, after the state S1 passes the action a0, it may return to the previous state S0 or change 
to the state S2. Moreover, it is also possible to keep the current state S1 with nothing to change. The 
number above the vector arrow represents the probability that the previous state will shift to another 
state after the action. R, corresponding to the vector arrow, is the reward we need to observe. 

3.1.State Space 

The decision state space, S, is the state of the unmanned navigation environment, which is the 
combination of a vector set of the state, P_((x)), and a vector set of the dynamic change of external 
context, Q_((y)). P_((x))=P_1,〖 P〗_2,…,P_m describes the set of actions, from act 1 to act m; 
while Q_((y))=Q_1,Q_2,…,Q_n is the set of vectors whose model takes a specific decision procedure 
to change the navigation state. Therefore, we obtain the formula S=(■(P_((x)),&Q_((y)),&ρ)), 
where ρ is the factorial of the set, i!, that describes the total summation of the most recent situation. 
The decision state space can be described as 
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where y > 0 is the model within a time period (which may be a very short period of time) for the 
amount of operations permitted. 
 

0 ≤ y ≤ lim
+→O

∑𝑃(+)  (2) 

 
The following four equations can be obtained from 𝑃(+), 𝑄(/), and 𝑟: 

 

𝜃7 = PQ(𝑃(+), 𝑄(/), 0)R
∑ 𝑥8 = 0467
89:
∑ 𝑦< = 04
<9:

ST ∈ 𝜃̅  (3) 

 
 

𝜃7 describes the model with no change in the unmanned vessel’s maneuvers and no change in the 
dynamic state of the external context for all the possible states. Here, r = 0. 

             𝜃V = PQ(𝑃(+), 𝑄(/), 0)R
∑ 𝑥8 > 0467
89:
∑ 𝑦< = 04
<9:

ST ∈ 𝜃̅      (4) 

𝜃V describes a single change in the unmanned vessel’s maneuvers, but no change in the external 
context. This situation rarely occurs. Thus, the index weight will be relatively small. 

             𝜃X = PQ(𝑃(+), 𝑄(/), 𝑖)R
∑ 𝑥8 = 0467
89:
∑ 𝑦< > 04
<9:

ST ∈ 𝜃̅       (5) 

𝜃X describes a single external context change. For instance, it may have detected a new target that 
could have an impact on the own ship’s safety. The model needs to continue to follow up the situation, 
so r = i. 

             𝜃Y = PQ(𝑃(+), 𝑄(/), 𝑖)R
∑ 𝑥8 > 0467
89:
∑ 𝑦< > 04
<9:

ST ∈ 𝜃̅       (6) 

𝜃Y describes the situation where a change occurs in both the unmanned vessel’s maneuvers and 
the external context. This situation commonly occurs in complex waters, and the model needs a 
continuous decision-making process. Thus, the index weight will be relatively large. 

Subsequently, 𝜃̅ = 𝜃7 ∪ 𝜃V ∪ 𝜃X ∪ 𝜃Y . When the unmanned boat’s performance limit y is a 
constant, θ represents all the possible operational decision states. 

                                     S = ∑ 𝑥4467
89:              (7) 
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3.2. Action Set 

For an unmanned vessel in the actual navigation process, from point A to point B, the system's 
navigation environment variables may occur in the entire navigation time interval [a, b]. In a safe 
navigation condition, the unmanned vessel does not have to make any maneuvers to change the 
model's navigational state; the actual decision-making time occurs only when the unmanned vessel 
encounters something affecting the safety of the navigation. Thus, the number of valid environment 
variables is the number of the MDP model’s decision moments. 

For the embedded MDP, it follows from the previous discussion that the effective decision time 
can only be generated in the θ2，θ4 decision state space, and the set of ship operations that can be 
selected belongs to set Ts. 

 
 

𝑇] = 	^
{0},																																											𝑠 ∈ 𝜃7
{A, D, P, S, AP, AS, DP, DS}, 𝑠 ∈ 𝜃V

{:},																																											]∈ef
{g,h,i,j,gi,gj,hi,hj},			k∈el

 (8) 

 

3.3. Reward Function 

It is assumed that the operating time interval of the unmanned vessel decision model is a time 
series that follows an exponential distribution. For the state S transferring to state S’ by action A, the 
mathematical expression is: 

    r(so|s, a) = 	 r
0,																																											𝑠 ∈ 𝜃7 ∪ 𝜃V
∫ 𝑟tu𝑡𝑑(1 − 𝑒6yz{), 𝑠 ∈ 	 𝜃X 	∪ 𝜃Y	
|
}

,   (9) 

where 𝑟tu is the reward generated by the traffic event occurrence of the action ω��, when the model 
is under the decision operation 𝛿��, and 𝑝tu is the probability that the unmanned vessel in the 𝛿�� 
decision-making operation needs to act upon the 𝜔�� operation. 
The MDP decision model based on a continuous timeline is now complete. 

3.4. Environment Formulation 

Maritime long-distance transportation vessels have great inertia, resulting in difficult control. In 
the case of deceleration, the ship's power system may cause damage, while frequent steering using 
the rudder could reduce the service life of the steering gear and propeller. Therefore, to optimize 
maneuvering, this study introduces the Markov process, with safe navigation constraints, as an 
unmanned vessel decision model. It integrates all the navigation data in a continuous decision-making 
timeline for the action set T. In an avoidance scenario, the local reward function not only needs to 
obtain the maximum value, but also needs to satisfy the global process to get the maximum reward 
value. Thus, it needs to achieve the purpose of optimizing navigation with less manipulation and 
obtain a larger reward function value. We can continue to simplify the MDPs model, through the 
Python computer programming language, to build a simple marine collision avoidance environment 
for simulation and authentication. 
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Figure 3:Simplified single-target, single-task Markov chain process 

4. Decision-Making Training and Analysis 

4.1 Simplified Decision Algorithm 

The process shown in Fig. 3 is a navigation situation usually encountered in a seaborne vessel. The 
own ship belongs to the original state from S0. According to the changes in the surrounding 
environment, the model tries to bring up a series of simple action behavior a0. The model keeps 
changing the status of this ship until a complete collision avoidance has been achieved and gives the 
state Sn. The purpose of the decision-making algorithm is to try to give manipulation in the process. 
It does not directly tell the model manipulation of right or wrong. Thus, the model only scores a 
reward value by random action and makes the final global reward Rt approach an optimal value. 

Some specific algorithm ideas are as follows: 

 
In the above algorithm, α is the learning efficiency, γ is the decay rate, MP(So, ao) is the true value, 

and MP(S, a) is the estimated value. 
In the model training of this study, we assume that the encountered scenario at sea is: according 

to the navigation experience and collision avoidance rules (COLREGS), the appropriate action 
behavior of an experienced officer of the watch is that if the “starboard five” is held for 10 s, it can 
safely avoid obstacles at sea. Therefore, to simplify the flow of demonstration algorithm, we can 
make a single-threaded simulation, where every second there is an action behavior taken. The action 
behavior can be the same as before the manipulation of this state, and only “turn to port five” or 
“starboard five” types of steering action can be chosen. After setting the reward value gained by 
different manipulative behaviors, the whole training process cannot interfere with human factors. If 

Algorithm: 
Initialize state S， 
𝑀𝑃(𝑆, 𝑎) ← 𝑀𝑃(𝑆, 𝑎) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥}�𝑀𝑃(𝑆o, 𝑎o) − 𝑀𝑃(𝑆, 𝑎)], 
𝑆 ← 𝑆′， 
until S is under the safe situation. 
MP(S,a) for all possible values of the composition in S_A_table， 
Pick a random action A from the original state and use the policy 
derived from S_A_table， 
S_A_table is State_Action_table， 
Take action A, observer, S’. 
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the model is trained, it can perform the avoidance and steering operation around 10 actions, indicating 
that this method can be applied to the unmanned vessel collision avoidance operations in a real 
offshore environment. 
 

 
Figure 4:Training model results (approach 10 steps to avoid obstacles) 

 

4.2 Training Result 

After 20 iterations of model training, we obtain the training results, as shown in Fig. 4. In the first 
training process, the model did not know which one was suitable and could avoid the manipulation 
of obstacles. Therefore, it took 72 steps to achieve the aim of obstacle avoidance, which is not suitable 
for the requirement of collision avoidance in a practical situation at sea. However, with the increase 
in training times, especially after training 5 times, the model quickly learned that if "starboard five" 
is the most effective action to avoid the obstacles in front of it, the number of subsequent rudder steps 
is obviously cut back. Finally, the model can be stabilized in about 10 steps, to complete the collision 
avoidance manipulation. 

4.3 Steering Action Data Analysis 

Moreover, as the training times increase, we can also obtain results as shown in Fig. 5. The abscissa 
axis in the figure is the number of steps performed in one state, and the ordinate axis is the average 
of the probabilities for decision-making. With the change of state, the decision made by the algorithm 
at the beginning does not know whether turn to port or starboard can be obtained a desirable outcome, 
but statistics of the results of 20 times training can be observed. Generally, after five steps, the 
"starboard five" action has significantly improved its probability compared to the "port five" decision, 
making it quicker to learn how to avoid the obstacles in front of it. Therefore, it also proves that the 
vessel is controlled to navigate safely, and the Markov processes-based autonomous decision-making 
model is fully applicable to the unmanned vessel navigation at sea.  
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Figure 5: Another perspective proves the ability of MDPs to make efficient decisions 

 
 
5. Conclusion 

This study formulated a Markov processes-based autonomous decision-making model to help an 
unmanned vessel achieve collision avoidance by methods learned by itself. Further, it constructed a 
simple common encounter environment, through the Python programming language, for a "starboard 
five" action, while keeping a 10 s rudder order to complete the obstacle avoidance action behavior 
that has training, which is known by officers of a watch’s experience. No human-based factors control 
the model to avoid the obstacles. The model explores on its own, and according to each step, gets the 
appropriate reward for choosing the best appropriate solution to achieve the collision avoidance goal. 
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